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Abstract - Vascular interventional surgery is the main method 

for treating cardiovascular diseases. But navigating endovascular 

catheters through the vascular tree is a highly challenging task 

even for highly trained specialists. Automation of this task can 

reduce the burden on surgeons and is expected to improve the 

surgical outcomes. Although there have been relevant studies 

utilizing reinforcement learning algorithms to realize autonomous 

navigation of catheter in the virtual environment Cathsim. 

However, the kinematics model of the catheter in Cathsim does 

not conform to the operating mode of the catheter in real vascular 

interventional surgery. Besides, there are problems such as low 

success rates of catheter autonomous navigation tasks. To address 

these issues, this paper modifies the kinematics model of the 

catheter in Cathsim and designs a catheter autonomous 

navigation model based on reinforcement learning DDPG (Deep 

Deterministic Policy Gradient) algorithm. The experimental 

results show that the agents trained through DDPG in this paper 

performs better than the agents trained through PPO (Proximal 

Policy Optimization) in other studies in terms of navigation task 

success rate, completion time, and contact force between the 

catheter and vascular wall during the navigation process. 
 
 Index Terms - Vascular interventional surgery, Catheter 

navigation, Deep reinforcement learning, Autonomous surgery, 

Virtual environment 

 

I.  INTRODUCTION 

Cardiovascular disease is one of the most causes of death 

in the world [1]. Vascular interventional surgery are minimally 

invasive surgery procedures frequently used to treat 

cardiovascular diseases [2]. One of the key technical 

component of vascular interventional surgery is a safe 

navigation of catheter (or guidewire) to a target place in a 

blood vessel [3]. This is a highly challenging task even for 

highly trained specialists. The dynamics of catheters are 

complex and non-linear and the patients' vasculature are often 

complex and diverse which increases the operative risk [4][5]. 

This will undoubtedly bring great mental pressure to surgeons, 

and the effectiveness of surgery often depends on the 

experience level and status of the doctor [6]. For these reasons, 

automation of cannulation can reduce the burden on surgeons 

and is expected to improve the average treatment result. 

Several robotic platforms have been developed to assist 

surgeons in vascular intervention surgery [7]. These robotic 

platforms aim to reduce the risk for orthopedic injuries for 

surgeons [8], and to reduce their exposure to X-rays [9]. 

Several clinical trials and surgeons also report that the use of 

the robot increased stability and accuracy of catheter 

navigation and facilitates some complex procedures [10]. 

However, these robots are all used as teleoperation tools and 

offer a low level of robotic autonomy [11].  

The development of deep reinforcement learning has 

promoted task autonomy for robots. [12]. In recent years, in 

the field of vascular interventional surgery, many research 

institutions and universities have utilized deep reinforcement 

learning to realize autonomous navigation of catheters and 

guidewires in blood vessels. Karstensen et al. from the 

Fraunhofer IPA in Germany used DDPG with HER (Hindsight 

Experience Replay) to achieve autonomous navigation of 

catheter in complex two-dimensional rigid vascular model 

[13]. However they did not achieve autonomous navigation of 

the catheter in a 3D(three-dimensional) vascular model. In real 

vascular interventional surgery, the catheter moves in a 3D 

vascular environment. Yang et al. from Beijing University of 

Posts and Telecommunications used reinforcement learning 

algorithm SAC (Soft Actor Critic) to train robot agents on a 

real vascular interventional surgical robot platform, achieving 

simple point-to-point guidewire autonomous navigation tasks 

in a 3D vascular model [14]. However, the cost of training 

agents through a real robot platform is relatively high, as it will 

cause a certain degree of loss to the robot platform. In 2022, 

Tudor Jianu et al. from the University of Liverpool in the UK 

proposed an open-source 3D virtual environment, Cathsim, 

which provides a benchmark platform for the development and 

testing of algorithms for catheter autonomous navigation in 

vascular interventional surgery [15]. Their experimental results 

indicate that using the simulator Cathsim, reinforcement 

learning agents can be successfully trained to complete 



different autonomous cannulation tasks. However, the motion 

mode of the catheter in Cathsim does not match the motion 

mode in real vascular interventional surgery where the catheter 

can only be pushed, pulled, and rotated. And their success rate 

in completing autonomous cannulation tasks using PPO 

trained agents is not high. 

In this paper, firstly, we modify the kinematics model of 

the catheter in Cathsim to approach the motion pattern of the 

catheter in real vascular interventional surgery. Secondly, we 

design a catheter autonomous navigation model based on 

reinforcement learning DDPG algorithm to improve the 

outcomes of autonomous cannulation tasks in Cathsim. 

The structure of this paper is as follows: Section I 

introduces the background, significance, and research status of 

autonomous catheter navigation in vascular intervention 

surgery; Section II introduces the reinforcement learning 

method, training environment and DDPG algorithm for 

achieving endovascular catheter autonomous navigation; 

Section III  introduces the experimental setup and analyzes the 

experimental results; Section IV presents the conclusion of this 

paper and future prospects. 

  

II. ENDOVASCULAR CATHETER AUTONOMOUS NAVIGATION 

 In this paper, we consider the navigation task of catheter 

in the aortic arch. The catheter was initially located within the 

ascending aorta and its task was to navigate to the 

brachiocephalic artery (BCA). The following will explain the 

methods of autonomous catheter navigation from three 

aspects: training environment, reinforcement learning 

algorithm and DDPG algorithm. 

 

A. Training Environment 

 Here we choose Cathsim as our virtual training 

environment for reinforcement learning. Cathsim is an open-

source simulation environment developed by Tudor Jianu et al. 

for the development of machine learning algorithms for 

autonomous endovascular catheter navigation. This 

environment is based on the MuJoCo physics engine, 

providing real-time force perception capabilities and a high-

fidelity visualization interface for aortic , catheter and vascular 

intervention surgical robots, making it very suitable for using 

different machine learning methods to train autonomous 

catheter navigation agent. 

 In Cathsim, the catheter is modeled by a discretisation 

approach. It consists of 100 bodies joined together by two 

revolute joints. However, the manipulation of the catheter is 

controlled by the tip of the catheter. This is not in line with the 

fact that passive catheters can only perform push-pull and 

rotation movements in real vascular interventional surgery. 
 To mimick the motion pattern of the catheter in real 

vascular interventional surgery, we modify the kinematics 

model of the catheter in Cathsim. Firstly, we disable the 

motors that drive the revolute joints at the tip of the catheter so 

they can only move passively like other joints. Secondly, we 

add a rotating joint around the catheter axis at the proximal 

link of the catheter to mimick the rotational movement of the 

catheter. 
 

B. Reinforcement Learning Methods 

 In this paper, we consider that the task of autonomous 

cannulation is an Partially Observable Markov Decision 

Process (POMDP) [16]. The agent, represented by a catheter, 

interacts with the environment represented by the aortic arch. 

The agent receives an observation, chooses to execute an 

action, receives a reward, and reaches a new state, and repeats 

it continuously. An episode is not terminated until the agent 

reaches the target position within the aorta. The schematic 

diagram of the reinforcement learning model [17] is shown in 

the Fig. 1. 

 
Fig. 1 The Reinforcement learning model 

 

 In the aortic arch cannulation task, we have the following 

definitions: 

 1)State: The state is an image. The image is taken by a 

RGB camera of 128 × 128 × 3 resolution which is placed on 

the top of the aortic arch phantom. Then we map the image 

from RGB to grayscale and use it as input state. This state 

space simulates the clinical procedure of surgeons observing 

fluoroscopic images. 

 2)Action space: The action space of the catheter includes 

the rotation and push-pull actions of the catheter. This action 

space also simulate the operation of the catheter by surgeons. 

 3)Reward: To implement the navigation of the catheter to 

the target point, we calculate the distance between the catheter 

head  and the target point :  . When the 

distance between the catheter head and the target point is 

greater than =8 mm , the reward value for each step is 

. When the distance between the catheter head and 

the target point is less than or equal to  , the current eposide 

ends, the agent receives a reward value of 10. The reward 

function is shown in Equation(1). 

 

 

C. Deep Deterministic Policy Gradient Algorithm 

 The DDPG algorithm is proposed based on the 

DPG(Deep Deterministic Policy) algorithm and belongs to the 

off policy algorithm of the actor critical method in model-free 

systems. It can be said that DDPG is an improvement on the 



DQN algorithm bacause it use the skills of DQN: target 

network and experience replay for reference. However the 

problem with DQN is that it can only solve problems with 

discrete and low dimensional action spaces [18]. In general 

physical or control problems, the action space is continuous. 

According to II.B, the action space of the catheter is 

continuous, so it is appropriate to use the DDPG algorithm 

here. The process of DDPG algorithm[19] is shown in Table I. 

 
TABLE I 

 PROCESS OF DDPG ALGORITHM 

Algorithm 1 Deep Deterministic Policy Gradient algorithm 

Randomly initialize critic network and actor with 

weights  and . 

Initialize target network and  with weights ,  

Initialize replay buffer  

for episode = 1,  do 

Initialize a random process  for action exploration 

Receive initial observation state  

for  do 

Select action  according to the current policy 

and exploration noise 

Execute action  and observe reward  and observe new state  

Store transition  in  

Sample a random minibatch of  transitions  from  

Set  

Update critic by minimizing the loss: 

 

Update the actor policy using the sampled policy gradient: 

 

Update the target networks: 

 

end for 

end for 

 

III.  EXPERIMENTS AND RESULTS 

 

A. Experimental  Setup 

 We consider the autonomous navigation of the catheter in 

two different types of aortic arches. Within both setups, we 

place the catheter tip inside the ascending aorta as the starting 

point for navigation. When the catheter tip navigates within 8 

mm of the target point (it is believed that the catheter has been 

inserted into the brachiocephalic artery), the task ends. The 

catheter navigation task experimental setups are shown in the 

Fig. 2. We train agents using DDPG algorithm and PPO 

algorithm based on the following settings which is shown in 

Table II. We use the parameters in [15] to train the DDPG 

agent and PPO agent, as shown in Table II. A total of 600000 

time steps were trained. In each episode, when the catheter 

reaches the target point or the number of interaction steps with 

the environment reaches 2000, an episode ends. In section II. 

B, it was mentioned that the input state is an image, so a CNN 

strategy was used to extract features from the input image. 

CNN has three convolution layers, and the activation function 

is ReLU. The learning rate is 0.0003. 

 
TABLE II 

TRAINNING PARAMETERS 

Policy CNN 

Training steps 600000 

Learning rate 0.0003 

Max episode steps 2000 

 

 
(a) Aortic arch-I                                       (b) Aortic arch-II 

 

Fig. 2 The experimental setups of the catheter navigation task 

 

B. Experimental  Results 

 The trend of rewards when using different reinforcement 

learning algorithms DDPG and PPO to train autonomous 

catheter navigation agents in aortic arch-I and aortic arch-II 

are as shown in Fig. 3(a) and Fig. 3(b), respectively. From the 

trend of rewards during the training process, it can be seen that 

agent trained with DDPG can obtain higher rewards in a 

shorter time compared to PPO in both aortic arches. This 

indicates that the DDPG algorithm performs better than the 

PPO algorithm in the given catheter autonomous navigation 

task. 

When the training is over, we evaluated the agents trained 

with DDPG and PPO algorithms in both aortic arches for 10 

episodes, extracting force interaction and reward information 

for each episode, as well as the success rate of navigation tasks 

and the time required to complete them. The average results 

are shown in the Table III. 

 The experimental results show that in both aortic arches, 

compared to PPO, the agents trained with DDPG have a higher 

success rate, shorter time to complete catheter autonomous 

navigation tasks, and less interaction with blood vessel walls. 

Overall, the DDPG algorithm performs better than the PPO 

algorithm in catheter autonomous navigation tasks. 

  We qualitatively evaluate the cannulation performance of 

the agent which has trained with DDPG by observing the 

successful and failed autonomous catheter navigation process 

in aortic arch-I because the cannulation in aortic arch-I is more 

difficult. The successful catheter navigation process is shown 

in the Fig. 4. 



 
(a) Aortic arch-I 

 
(b) Aortic arch-II 

 
Fig. 3 The rewards when trraining autonomous catheter navigation agents 

using DDPG and PPO in the aortic arch-I and aortic arch-II 

 

 Through the observation of the successful autonomous 

catheter navigation process, we can see that the DDPG agent 

has successfully navigated the catheter to the target point at t 

=12s as shown in Fig. 4(f). At t=4s, as shown in Fig. 4(c) , the 

agent successfully passes the catheter through the curved part 

of the blood vessel by rotating and pushing it with the help of 

the contact between the catheter and the blood vessel wall. 

Also with the help of the contact between the catheter and the 

blood vessel wall, the agent successfully inserted the catheter 

into the target branch, as shown in Fig. 4(d) - Fig. 4(f). 

 The skill of agent’s cannulation is similar to that of 

surgeons in real vascular interventional surgery. During the 

surgery, the catheter used by the surgeons is a passive catheter, 

which cannot be steerable. The catheter can only be either 

pushed, pulled or rotated along its longitudinal axis. 

Therefore, navigation of catheters in blood vessels relies 

heavily on the contact between the catheter and the vessel 

wall, especially when passing through the curved and 

bifurcated parts of the vessel. As a consequence, from the 

successful catheter navigation process, we believe that the 

agent has successfully learned the skills of cannulation in 

blood vessels through the the reinforcement learning algorithm 

DDPG. 

The failed situation is that the agent inserted the catheter 

into the wrong blood vessel branch, as shown in Fig. 5. One 

possible reason for the failed cannulation is that the setting of 

the reward function which is shown in Equation(1). Whilst this 

reward function assists in agent convergence, it is also prone to 

local minima. As a consequence, the catheter is inserted into a 

bifurcation of blood vessels that are closer to the target 

bifurcation. In the future, the reward function will be 

optimized, such as increasing the value of  (the distance 

between catheter tip and target) to improve the success rate of 

cannulation. 

 

  

(a)t = 0s                      (b)t = 2s                     (c)t = 4s 

 

(d)t = 8s                      (e)t = 10s                    (f)t = 12s 

Fig. 4 The successful catheter navigation proces 

 

 

 
 

Fig. 5 The failed catheter navigation situation 

 



TABLE III 

EVALUATION RESULTS

                          

IV. CONCLUSIONS 

 In this paper, we modified the kinematics model of the 

catheter in Cathsim to approach the motion pattern of the 

catheter in real vascular interventional surgery. Besides, we 

designed a catheter autonomous navigation model based on 

reinforcement learning DDPG. The comparative experimental 

results with the reinforcement learning algorithm PPO showed 

that in catheter navigation task in different environments, the 

success rate of the agent trained with DDPG is higher, the 

average and maximum contact force with the blood vessel wall 

is smaller, and the time required to complete the task is 

shorter. The overall performance of DDPG was better than the 

PPO algorithm. 

 Although we had implemented autonomous navigation of 

catheters in a virtual environment, there is still a long way to 

go to transplant the models trained in the virtual environment 

to laboratory environments and ultimately apply them to 

clinical applications. Firstly, it is necessary to establish a 

highly realistic vascular environment and catheter guidewire 

model; Secondly, it is difficult to establish a one-to-one 

correspondence between various quantities in the virtual 

environment and the real environment. How to reduce the 

impact of registration errors is a problem that needs to be 

solved. 

 In the future, we will investigate how to apply models 

trained with reinforcement learning algorithm DDPG in virtual 

environments to our laboratory environments. 
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Aorta Algorithm Reward Mean Force（N） Max Force（N） Success % Time（s） 

Aortic  arch-I 
DDPG -64 50 0.002 0.0001 0.079 0.027 80 12 1.2 

PPO -151 84 0.004 0.0015 0.193 0.175 60 20 2.6 

Aortic  arch-II 
DDPG -10 1 0.002 0.0002 0.017 0.002 100 4 0.8 

PPO -50 12 0.008 0.0021 0.125 0.004 80 7 1.1 
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